Evaluating of Several Parameters in Marine Chlorella sp. Flocculation Process, and Biodiesel Production via Chlorophyll-Extracted Microalgal Biomass (CEMB)

Authors

  • Yohanis Irenius Yohanis I. Mandik Jurusan Kimia FMIPA Universitas Cenderawasih
  • Benjamas Benjamas Cheirsilp Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, 90112, Thailand

DOI:

https://doi.org/10.31957/.v5i1.2006

Abstract

The screening for a high efficient method in harvesting microalgae is an important step to a large scale microalgal biodiesel production.  Magnesium salt (MgSO4·7H2O) concentration of 0.0083 gram per litter of marine Chlorella sp. culture with biomass concentration of 3.78 g/L showed the highest flocculation efficiency (FE) of 94.63%  at pH of 11 after only 10 minutes of flocculation time.  There was no any difference of FE between two different volumes of culture, after 10 minutes of flocculation.

 

Keywords:  Chu 13, flocculation efficiency, magnesium salt, marine Chlorella sp.,         photoautotroph, rapid harvesting

Downloads

Download data is not yet available.

Author Biographies

Yohanis Irenius Yohanis I. Mandik, Jurusan Kimia FMIPA Universitas Cenderawasih

Jurnal Avogadro adalah jurnal yang dikelola oleh Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Cenderawsih Jayapura

Benjamas Benjamas Cheirsilp, Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, 90112, Thailand

Jurnal Avogadro adalah jurnal yang dikelola oleh Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Cenderawsih Jayapura

References

Cheirsilp, B. and Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol. 110: 510–516.

Chiaramonti, D. (2007). Bioethanol: role and production technologies. In: Ranalli, P. (Ed.). Improvement of Crop Plants for Industrial End Uses, pp. 209–251.

John, R.P., Anisha, G.S., Nampoothiri, K.M. and Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 102: 186-193.

Largeau, C., Casadevall, E., Berkaloff, C. and Dhamelincourt, P. (1980). Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochem. 19: 1043–51.

Trent J. (2012). OMEGA: The future of biofuels? In: Conference. The ASEAN algae biofuels conference. Singapore.

Uduman, N., Qi, Y., Danquah, M.K., Forde, G.M. and Hoadley, A. (2010). Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J. Renew. & Sustain. Energy 2: 0127011–0127015.

Wu, Z., Zhu, Y., Huang, W., Zhang, C., Li, T., Zhang, Y. and Li, A. (2012). Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour. Technol. 110: 496–502.

Zheng, H.L., Gao, Z., Yin, F.W., Ji, X.J. and Huang, H. (2012). Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Bioresour. Technol. 117: 1–6.

Downloads

Published

2022-04-13