Biochemical Characterization of Lipid-Extracted Microalgal Biomass Residues

Authors

  • Yohanes Irenius Mandik Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cenderawasih, Jalan Kamp Walker, Jayapura 99358, Indonesia Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat- Yai, 90112, Thailand Research Institute of Papua (LIPTEK Papua) Jalur-7 Kompleks Furia, Kotaraja Abepura, Jayapura, Papua. 62967587106, Indonesia.
  • Frans Asmuruf Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cenderawasih, Jalan Kamp Walker, Jayapura 99358, Indonesia Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, 90112, Thailand Research Institute of Papua (LIPTEK Papua) Jalur-7 Kompleks Furia, Kotaraja Abepura, Jayapura, Papua. 62967587106, Indonesia.
  • Don Flassy Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cenderawasih, Jalan Kamp Walker, Jayapura 99358, Indonesia Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat- Yai, 90112, Thailand Research Institute of Papua (LIPTEK Papua) Jalur-7 Kompleks Furia, Kotaraja Abepura, Jayapura, Papua. 62967587106, Indonesia.
  • Benjamas Cheirsilp Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cenderawasih, Jalan Kamp Walker, Jayapura 99358, Indonesia Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat- Yai, 90112, Thailand Research Institute of Papua (LIPTEK Papua) Jalur-7 Kompleks Furia, Kotaraja Abepura, Jayapura, Papua. 62967587106, Indonesia.

DOI:

https://doi.org/10.31957/.v2i1.899

Abstract

Massive interests to microalgal biodiesel are obvious to date, due to the promising prospect of microalgae as biodiesel feedstock. Nevertheless, based on the result of energy analyses and life- cycle assessments, microalgal biodiesel production has consumed large amount of energy and it has not been cost effective yet. Therefore, utilization of lipid-extracted microalgal biomass residues (LMBRs), one kind of residues produced after lipid extraction in biodiesel production should be effectively investigated. This work emphasizes on the overview of researches related to the biochemical characterization of LMBRs. The LMBRs of Dunaliella tertiolecta (UTEX LB  999) consisted of total carbohydrates of 82.0%, proteins of 13.4%, and ash of 4.5% (w/w in dry mass). Meanwhile, D. tertiolecta LB 999 LMBRs contained carbohydrate of 60%, and its saccharification  yield was 42% based on LMBRs mass. Moreover, the biochemical composition of Haematococcus pluvialis LMBRs were crude fiber (9.6%), crude protein (40.3%), and crude lipid (0.9%) while Scenedesmus sp. LMBRs contained carbohydrate (24.7%), protein (32.4%), lipid (6.5%) and ash (10.0%).

 Keywords: microalgal, biodiesel, LCA, LMBRs, characterization, EPS, saccharification

Downloads

Download data is not yet available.

Author Biographies

Yohanes Irenius Mandik, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cenderawasih, Jalan Kamp Walker, Jayapura 99358, Indonesia Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat- Yai, 90112, Thailand Research Institute of Papua (LIPTEK Papua) Jalur-7 Kompleks Furia, Kotaraja Abepura, Jayapura, Papua. 62967587106, Indonesia.

Jurusan Kimia FMIPA Universitas Cenderawasih

Frans Asmuruf, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cenderawasih, Jalan Kamp Walker, Jayapura 99358, Indonesia Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, 90112, Thailand Research Institute of Papua (LIPTEK Papua) Jalur-7 Kompleks Furia, Kotaraja Abepura, Jayapura, Papua. 62967587106, Indonesia.

Jurusan Kimia FMIPA Universitas Cenderawasih

Don Flassy, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cenderawasih, Jalan Kamp Walker, Jayapura 99358, Indonesia Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat- Yai, 90112, Thailand Research Institute of Papua (LIPTEK Papua) Jalur-7 Kompleks Furia, Kotaraja Abepura, Jayapura, Papua. 62967587106, Indonesia.

Jurusan Kimia FMIPA Universitas Cenderawasih

Benjamas Cheirsilp, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cenderawasih, Jalan Kamp Walker, Jayapura 99358, Indonesia Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat- Yai, 90112, Thailand Research Institute of Papua (LIPTEK Papua) Jalur-7 Kompleks Furia, Kotaraja Abepura, Jayapura, Papua. 62967587106, Indonesia.

Jurusan Kimia FMIPA Universitas Cenderawasih

References

Antolin, G., Tinaut, F.V. and Briceno, Y. (2002). Optimisation of biodiesel production by sunflower oil transesterification. Bioresour. Technol. 83: 111–114.

Babel, S. and Takizawa, S. (2010). Microfiltration membrane fouling and cake behavior during algal filtration. Desalination. 261: 46–51.

Barsanti, L. and Gualtieri, P. (2006). Algae: Anatomy, Biochemisty and Biotechnology. CRC Press. Taylor and Francis Group. Florida.

Basmal, J. (2008). Peluang dan tantangan pemanfaatan mikroalga sebagai biofuel. Squalen. 3(1): 34–39.

Becker, E.W. (1994). Microalgae: biotechno- logy and microbiology. Cambridge University Press. Cambridge. UK.

Bold, H. C. and Wynne, M. J. (1978). Introduction to the algae: Structure and reproduction. (2nd ed). Englewood Cliffs. N.J.: Prentice-Hall Inc.

Brown, M.R., Jeffrey, S.W., Volkman, J.K. and Dunstan, G.A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture. 151: 315–31.

Cadenas, A. and Cabezndo S. (1998). Biofuels as sustainable technologies: perspectives for less developed countries. Technol. Forecast Social Change. 58:83– 103.

Cheirsilp, B. and Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol. 110: 510–516.

Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J. and Chang, J.S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a criticalreview. Bioresour. Technol. 102, 71–

Cheng, J., Yu, T., Li, T., Zhou, J. and Cen K. (2013). Using wet microalgae for direct biodiesel production via microwave irradiation. Procedia Env. Sci. 15: 47 – 55.

Chiaramonti, D. (2007). Bioethanol: role and production technologies. In: Ranalli, P. (Ed.). Improvement of Crop Plants for Industrial End Uses, pp. 209–251.

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv. 25: 294–306.

Chojnacka, K. and Noworyta, A. (2004). Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb. Technol. 34: 461–465.

Christie, W.W. (2003). Lipid Analysis: Isolation, Separation, and Structural Analysis of Lipids. 3rd ed. P.J. Barnes & Associates. Bridgewater, U.K.

Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M. and Cintas, P. (2008). Improved extraction of vegetable oils under high-intensity ultrasound and/or micro- waves. Ultrason. Sonochem. 15: 898–902.

Daroch, M., Geng, S. and Wang, G. (2013). Recent advances in liquid biofuel production from algal feedstocks. Appl. Energy. 102: 1371-1381.

Deng, X., Li, Y. and Fei, X. (2009). Microalgae: A promising feedstock for biodiesel, Afr. J. Microbiol. Res. 3: 1008-1014.

Detailed structure of plant cell. (online).Available: http://water.me.vccs.edu/courses/ env108/clipart/eucaryotic.gif. Accessed on 20 May 2013.

Divakaran, R. and Sivasankara Pillai, V.N., (2002). Flocculation of algae using chitosan. J. Appl. Phycol. 14: 419–422.

Dunstan, G.A., Volkman, J.K., Barrett, S.M. and Garland, C.D. (1993).

Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J. Appl. Phycol. 5: 71–83.

Fahy, E., Subramaniam, S., Brown, H.A., Glass, C.K., Merrill Jr., A.H., Murphy, R.C., Raetz, C.R.H., Russell, D.W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., Van Nieuwenhze, M.S., White, S.H., Witztum, J.L. and Dennis, E.A. (2005). A comprehensive classification system for lipids. J. Lipid Res. 46: 839-862.

Fuls, J., Hawkins, C.S. and Hugo, F.J.C. (1984). Tractor engine performance on sunflower oil fuel. J.Agri.Eng.Res.30: 29–35.

Goo, B.G., Baek, G., Choi, D.J., Park, Y.I., Synytsya, A., Bleha, R., Seong, D.H., Lee, C.G. and Park, J.K. (2013). Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Bioresour. Technol. 129: 343– 350

Gouveia L. and Oliveira, A.C. (2009). Microalgae as a raw material for biofuels production. J. Indust. Microbiol. Biotechnol. 36: 269-274.

Guschina, I.A. and Harwood, J.L. (2006). Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45: 160–86.

Guzman, H.M., Valido, A.J., Duarte, L.C. and Presmanes, K.F. (2010). Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions. Aquacult. Intl. 18:189–99.

Halim, R., Danquah, M.K. and Webley, P.A. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnol. Adv. 30: 709–732.

Hossain, A.B.M., Salleh, A., Boyce, A.N. and Naqiuddin, M. (2008). Biodiesel fuel production from algae as renewable energy.Am.J.Biochem. Biotech. 4: 250-254.

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54: 621-639.

Huang, G., Chen, F., Wei, D., Zhang, X. and Chen, G. (2010). Biodiesel production by microalgal biotechnology. Appl. Energy. 87: 38-46.

John, R.P., Anisha, G.S., Nampoothiri, K.M. and Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 102: 186-193.

Ju, Z-Y., Deng, D-F. and Dominy, W. (2012). A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus

vannamei, Boone,1931).Aquaculture.354–355: 50–55.

Lam, M.K. and Lee, K.T. (2012). Microalgae biofuels: a critical review of tissues, problems and the way forward. Biotechnol. Adv. 30: 673–690.

Lee, R. E. 1999. Phychology (3rd ed.). Cambridge, U.K.: Cambridge University Press.

Lee, O.K., Kim, A.L., Seong, D.H., Lee, C.G., Jung, Y.T., Lee, J.W., Lee, E.Y. (2013). Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresour. Technol. 132: 197–201.

Li, Y., Horsman, M., Wu, N., Lan, C. and Dubois-Calero, N. (2008). Biofuels from microalgae.Biotech. Progress. 24: 815-820.

Liang, Y.N., Sarkany, N. and Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31: 1043–1049.

Lv, X., Zou, L., Sun, B., Wang, J. and Sun, M.Y. (2010). Variations in lipid yields and compositions of marine microalgae during cell growth and respiration, and within intracellular structures. J. Exp. Marine Biol. & Ecol. 391: 73–83.

Massinggil, M. J. 2009. 15 Years of experience producing microalgae feedstock and resulting co-products. Kent Bioenergy Corporation. San Diego.

Medina, A.R., Grima, E.M., Gimenez, A.G. and Ibanez, M.J. (1998). Downstream processing of algal polyunsaturated fatty acids. Biotechnol. Adv. 16(3): 517–80.

Mercer, P. and Armenta, R.E. (2011). Developments in oil extraction from microalgae, Eur.J.Lipid Sci.113(5):539-547.

Miao, X. and Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97: 841-846.

Mishra, A., Jha, B. (2009). Isolation and characterization of extracellular polymeric substances from microalgae Dunaliella salina under salt stress. Bioresour. Technol. 100:3382-86.

Neto, A.M.P., Sotana de Souza, R.A., Leon- Nino, A.D., da Costa, J.D.A., Tiburcio, R.S., Nunes, T.A., de Mello, T.C.S., Kanemoto, F.T.,

Saldanha-Corrêa, F.M.P. and Gianesella, S.M.F. (2013). Improvement in microalgae lipid extraction using a sonication-assisted method. Renew. Energy. 55: 525-531.

Olaizola, M. (2003). Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol. Eng. 20: 459-466.

Ota, M., Kato, Y., Watanabe, H., Watanabe, M., Sato, Y., Smith Jr., R.L. and Inomata, H. (2009). Fatty acid production from a highly CO2 tolerant alga, Chlorococcum littorale, in the presence of inorganic carbon and nitrate. Bioresour. Technol. 100:5237–42.

Patil, P., Reddy, H., Muppaneni, T., Deng, S., Cooke, P., Lammers, P., Khandan, N., Omar Holguin, F. and Schuab, T. (2012). Power dissipation in microwave-enhanced in-situ transesterification of algal biomass. Green Chem. 14: 809–818.

Posten, C. and Schaub, G. (2009). Microalgae and terrestrial biomass as source for fuels– a process view. J. Biotechnol. 142: 64–69.

Ramadan, M.F., Asker, M.H.S. and Ibrahim ZK. (2008). Functional bioactive compounds and biological activities of Spirulina platensis lipids. Czech. J. Food Sci. 26(3):211–22.

Sander, K. and Murthy, G. (2010). Life cycle analysis of algae biodiesel. Int. J. Life Cycle Ass. 5: 704–714.

Sheehan, J., Cambreco, Duffield, J., Graboski, M. and Shapouri, H. 1998. An overview of biodiesel and petroleum diesel life cycles. US Department of Agriculture and Energy Report. 1998. p. 1–35.

Shen T. and Wang. J.Y. editors. 1989. Lipids. In: Biochemistry. 2nd ed. Beijing: Advanced Education Press. p. 44–51.

Somogyi, M. (1952). Notes on sugar determination. J. Biol. Chem. 195: 19–23.

South, G. R. and Whittick, A. 1987. Introduction to phychology. Oxford, U.K.: Blackwell Scientific Publications. Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. (2006). Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87–96.

Suarez, E.R., Kralovec, J.A., Noseda, M.D., Ewart, H.S., Barrow, C.J., Lumsden, M.D. and Grindley, T.B. (2005). Isolation, characterization and structural determi- nation of a unique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa. Carbohydr. Res. 340: 1489–1498.

Sukenik, A. and Shelef, G. (1984). Algal autoflocculation–verification and proposed mechanism.Biotechnol.Bioeng.26:142–147.

Teresa M. M., Antonio A. M. and Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renew. & Sustain. Energy. 14: 217-232.

Trent J. OMEGA: The future of biofuels? In: Conference. The ASEAN algae biofuels conference. Singapore. 2012. Uduman, N., Qi, Y., Danquah, M.K., Forde,

G.M. and Hoadley, A. (2010). Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J. Renew. & Sustain. Energy 2: 0127011–0127015.

Vandamme, D., Foubert, I., Meesschaert, B. and Muylaert, K. (2010). Flocculation of microalgae using cationic starch. J. Appl. Phycol. 22: 525–530.

Vicente, G., Martinez, M. and Aracil, J. (2004). Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour. Technol. 92: 297–305.

Wei, F., Gao, G.Z., Wang, X.F., Dong, X.Y.,Li, P.P., Hua, W., Wang, X., Wu, X.M. and Chen, H. (2008). Quantitative determination of oil content in small quantity of oilseed rape by ultrasound-assisted extraction combined with gas chromatography. Ultrason. Sonochem. 15(6): 938–942.

Widjaja, A. (2009). Lipid production from microalgae as a promising candidate for biodiesel production. Makara Teknol. 13: 47-51.

Williams, P.J.L.B. and Laurens, L.M.L., (2010). Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetics and economics. Energy Environ. Sci. 3: 554–590.

Wu, Z., Zhu, Y., Huang, W., Zhang, C., Li, T., Zhang, Y. and Li, A. (2012). Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour. Technol. 110: 496–502.

Yang, Z., Guo, R., Xu, X., Fan, X. and Li, X. (2010). Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int. J. of Hydrogen Energy. 35: 9618-9623.

Zheng, H.L., Gao, Z., Yin, F.W., Ji, X.J. and Huang, H. (2012). Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two- step enzymatic hydrolysis. Bioresour. Technol. 117: 1–6.

Downloads

Published

2019-07-22