Karakterisasi Resistensi dan Dekolorisasi Berbagai Pewarna Oleh Bakteri Indigen Indonesia Escherichia coli Strain CN5


  • Wahyu Irawati Universitas Pelita Harapan
  • Vania A.C. Timotius Universitas Pelita Harapan, Tangerang
  • Ruben P. Adhiwijaya Universitas Pelita Harapan, Tangerang
  • Eunike B. Marvella BPK Penabur Gading Serpong, Tangerang




The development of the textile industry in Indonesia is increasing the amount of dye waste produced. Copper is often a component of dyes, both of which harm aquatic ecosystems because they cannot be degraded. These problems can be overcome by bioremediation using bacteria isolated from polluted waters, called indigenous bacteria. It is hoped that indigenous bacteria can degrade textile waste and reduce copper toxicity in waters. This study aims to characterize, test resistance, and test the decolorization of the Indonesian indigenous bacterial isolate CN5 to dye and copper. There are 12 kinds of dyes used, namely: methylene blue, malachite green, congo red, mordant orange, reactive black, direct yellow, basic fuchsin, reactive orange, disperse orange, remasol red, wantex yellow, and wantex red. Resistance and decolorization tests on solid medium were carried out by growing bacterial cultures into luria bertani agar medium, each of which added a different type of dye. The dye concentrations tested were 100 ppm and 500 ppm. The ability to decolorize is known from the presence of a clear zone around the bacterial colony. The percentage of decolorization was tested using a spectrophotometer at a wavelength of 300-900 nanometers. Bacterial identification was carried out by 16S-rRNA sequencing. The results showed that CN5 isolates had a base similarity of 100% with Escherichia coli, so hereinafter referred to as E. coli strain CN5 could grow at 200 ppm and 500 ppm methylene blue, malachite green, congo red, mordant orange, reactive black, direct yellow, reactive orange, disperse orange, red remasol, yellow wantex, and red wantex but did not grow on fuchsin basic dye. Colonies of E. coli strain CN5 were only able to decolorize methylene blue with a concentration of 200 ppm and 500 ppm seen from the clear zone formed around the colony. The decolorization of methylene blue that occurred was 92.47%. The addition of copper reduced the decolorization ability to 75.59%. Based on the results of this study, it can be concluded that the E. coli strain CN5 has the potential to be used as a bioremediation agent for textile waste containing copper and methylene blue.

Key words: dye; E. coli; copper; decolorization; resistant


Download data is not yet available.

Author Biographies

Vania A.C. Timotius, Universitas Pelita Harapan, Tangerang


Ruben P. Adhiwijaya, Universitas Pelita Harapan, Tangerang


Eunike B. Marvella, BPK Penabur Gading Serpong, Tangerang



Agustina, T.E., E. Nurisman, Prasetyowati, N. Haryani, L. Cundari, A. Novisa, and O. Khristina. 2011. K-3 pengolahan air limbah pewarna sintetis dengan menggunakan reagen fenton. Prosiding Seminar Nasional AVoER Ke-3. pp: 26–27.

Ahmed, A.M., E. Lyautey C. Bonnineau A. Dabrin and S. Pesce. 2018. Environmental concentrations of copper, alone or in mixture with arsenic, can impact river sediment microbial community structure and functions. Front Microbiol. 9: 1-13.

Badan Pusat Statistik. 2018. Pengelolaan sampah di Indonesia. Statistik Lingkungan Hidup Indonesia 2018. 04320-1803.

Balraj, B., Z. Hussain, and P. King. 2016. Experimental study on non sporulating Escherichia coli bacteria in removing methylene blue. International Journal of Pharma and Bio Sciences. 7(1): 629–637.

Enrico. 2019. Dampak limbah cair industri tekstil terhadap lingkungan dan aplikasi teknik eco printing sebagai usaha mengurangi limbah. Moda. 1(1): 5–13.

Fidiastuti, H., dan E. Suarsini. 2017. Potensi bakteri indigen dalam mendegradasi limbah cair pabrik kulit secara in vitro. Bioeksperimen. 3(1): 1-10.

Fu, Y., and T. Viraraghavan. 2001. Fungal decolorization of dye wastewater: A review. Bioresource Technology. 79: 251-262.

Fung, D., and R. Miller. 1973. Effects of dyes on bacterial growth. Journal of Applied Microbiology. 25(5): 793-799.

Gao, Y., B. Yang, and O. Wang. 2018. Biodegradation and decolorization of dye wastewater: A review. IOP Conference Series: Earth and Environmental Science. 178: 1-5.

Hala, Y., E. Suryati, dan P. Taba. 2012. Biosorpsi campuran logam Pb2+ dan Zn2+ oleh Chaetoceros calcitrans. Chemistry Progress. 5(2): 86–92.

Immamuddin, H. 2001. Resistensi beberapa isolat bakteri terhadap logam berat (Hg, As, Cd, Ni, Pt, dan Se). Jurnal Biologi Indonesia. 3(2): 161–167.

Irawati, W., R. Pinontoan, B. Mouretta, and T. Yuwono. 2022. The potential of copper-resistant bacteria Acinetobacter sp. strain CN5 in decolorizing dyes. Biodiversitas. 23(2): 679-685.

Juliantra, I.K.P., N.L. Watiniasih, dan I.W. Kasa. 2015. Toksisitas detergen dan pewarna kain sintetis terhadap anggang-anggang (Gerris marginatus). Jurnal Biologi. 19(1): 15–20.

Komarawidjaja, W. 2017. Paparan limbah cair industri mengandung logam berat pada lahan sawah di Desa Jelegong, Kecamatan Rancaekek, Kabupaten Bandung. Jurnal Teknologi Lingkungan. 18(2): 173.

Kuhad, R., N. Sood, K. Tripathi, A. Singh, and O. Ward. 2004. Developments in microbial methods for the treatment of dye effluents. In Advances in Applied Microbiology. 56: 185–213.

Lade, H., A. Kadam, D. Paul, and S. Govindwar. 2015. Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential micro-aerophilic/aerobic processes. EXCLI Journal. 14: 158–174.

O’Mahony, T., E. Guibal and J.M. Tobin. 2002. Reactive dye biosorption by Rhizopus arrhizus biomass. Enzyme and Microbial Technology. 31(4): 456–463.

Pinheiro, L., D. Gradíssimo, L. Xavier, and A. Santos. 2022. Degradation of azo dyes: Bacterial potential for bioremediation. Sustainability. 14(1510): 1-23.

Putra, W. 2018. Sungai citarum masih tercemar limbah tekstil dan kertas. Diakses dari DetikCom: https://news. detik.com/berita-jawa-barat/d-3850610/sungai-citarum-masih-tercemar-limbah-tekstil-dan-kertas (1 Mei 2022).

Rini, Y. 2013. Biodegradasi pewarna azo orange G dengan teknik immobilisasi isolat bakteri. [Repository] Universitas Gadjah Mada. Yogyakarta.

Ritter, C. 1940. Studies of the toxicity of basic fuchsine for certain bacteria. American Journal of Public Health (AJPH). 30(1): 59–65.

Rogosa, M. 1934. The bacteriostatic action of gentian violet, crystal violet, basic fuchsine, and acid fuchsin on certain gram positive bacteria [Master Theses]. University of Massachusetts Amherst.

Ryan R., S. Monchy, M. Cardinale, S. Taghavi, L. Crossman, M. Avison, G. Berg, van der Lelie, and J. Dow. 2009. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Review Microbiology. 7: 514–525.

Sani, Z.M., I.L. Abdullahi, and A. Sani. 2018. Toxicity evaluation of selected dyes commonly used for clothing materials in urban Kano, Nigeria. European Journal of Experimental Biology. 08(04): 26. doi:10.21767/2248-9215.100067.

Saratale, R., G. Saratale, J. Chang, and S. Govindwar. 2011. Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers. 42: 138–157.

Shani, R. 2019. Sungai di Jepara tercemar limbah pewarna tekstil. Diakses dari Medcom.id: https://www. medcom.id/nasional/daerah/0kpVyQ5N-sungai-di-jepara- tercemar-limbah-pewarna-tekstil (1 Mei 2022).

SijerÄić, A., Z. Jassin, and M. Avidić. 2019. Effect of food coloring dyes on bacterial growth. International Journal of Innovative Science and Research Technology. 4(12): 676-679.

Solís, M., A. Solís, H. Pérez, N. Manjarrez, and M. Flores. 2012. Microbial decolouration of azo dyes: A review. Process Biochemistry. 47: 1723–1748.

Stackebrandt, E., and B.M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA Sequence analysis in the present species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology. 44: 846–849.

Stolz, A. 2001. Basic and applied aspects in the microbial degradation of azo dyes. Applied Microbiology and Biotechnology. 56(1–2): 69–80.

Velan, P.R., S. Rajakumar, and P.M. Ayyasamy. 2012. Exploration of promising dye decolorizing bacterial strains obtained from erode and tirupur textile wastes. International Journal of Environmental Sciences. 2(4): 2470–2481.

Wuana, R.A., and F.E. Okieimen. 2011. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Intl Scholarly Research Notices Ecology. 2011: 402647. doi:10.5402/2011/402647.

Yasid, M. 2014. Peranan isolat bakteri indigenous sebagai agen bioremediasi perairan yang terkontaminasi uranium. Ganendra Majalah IPTEK Nuklir. 17(1): 35–44.

Zille, A. 2005. Laccase reactions for textile applications. [Disertasi]. Textile Departement Universidade do Minho. Itália.






Research Articles