Senyawa Bioaktif Herpetofauna pada Penderita Diabetes Mellitus dan Hipertensi: Tinjauan Secara Patofisiologi


  • Aditya K. Karim Laboratorium Fisiologi Hewan, Jurusan Biologi, FMIPA Universitas Cenderawasih, Jayapura
  • Rury Eprilurahman Laboratorium Taksonomi Hewan, Fakultas Biologi Universitas Gadjah Mada Yogyakarta
  • Laksmindra Fitria Laboratorium Fisiologi Hewan, Fakultas Biologi Universitas Gadjah Mada Yogyakarta
  • Paul J. Kawatu Laboratorium Fisiologi Hewan, Jurusan MIPA, FKIP Universitas Cenderawasih, Jayapura



Amphibians and reptiles (herpetofauna groups) produced of many compounds. The herpetofauna and their chemical compounds have been the subject of intense research interest for many years due to their potential in medical application and in lead compound development for new drugs. A number of different types of compounds have been identified from the glandular skin secretions of amphibians and venom or saliva of reptiles. These compounds have been shown to be active against gram-negative and gram-positive bacteria, fungi, enveloped viruses, diabetes mellitus, hypertension and cardiovascular disorder.

Key words: Herpetofauna, diabetes mellitus, hypertension, drugs, pathophysiology


Download data is not yet available.

Author Biographies

Aditya K. Karim, Laboratorium Fisiologi Hewan, Jurusan Biologi, FMIPA Universitas Cenderawasih, Jayapura

Laboratorium Fisiologi Hewan, Jurusan Biologi, FMIPA Universitas Cenderawasih, Jayapura

Rury Eprilurahman, Laboratorium Taksonomi Hewan, Fakultas Biologi Universitas Gadjah Mada Yogyakarta

Laboratorium Taksonomi Hewan, Fakultas Biologi Universitas Gadjah Mada Yogyakarta

Laksmindra Fitria, Laboratorium Fisiologi Hewan, Fakultas Biologi Universitas Gadjah Mada Yogyakarta

Laboratorium Fisiologi Hewan, Fakultas Biologi Universitas Gadjah Mada Yogyakarta

Paul J. Kawatu, Laboratorium Fisiologi Hewan, Jurusan MIPA, FKIP Universitas Cenderawasih, Jayapura

Laboratorium Fisiologi Hewan, Jurusan MIPA, FKIP Universitas Cenderawasih, Jayapura 


Abdel-Wahab, Y.H., L. Marenah, D.V. Orr, C. Shaw, and P.R. Flatt. 2005. Isolation and Structural Characterisation of A Novel 13-Amino Acid Insulin-Releasing Peptide from The Skin Secretion of Agalychnis calcarifer. Biol. Chem. 386: 581–587.

Armstrong, D.G. and L.A. Lavery. 1998. Diabetic foot ulcers: Prevention, diagnosis and classification. Am Fam Physician. 57(6): 1325-1332.

American Diabetes Association 2011. Diagnosis and classification of diabetes mellitus. Diabetes Care. 35 (Suppl-1): S62-S69.

American Diabetes Association 2012. Standards of medical care in diabetes-2012. Diabetes Care. 35(Suppl-1): S11-S63.

Boulton, A.J. 2000. The diabetic foot: a global view. Diabetes Metab Res Rev. 16(Suppl-1): S2-S5.

Brand, G.D., F.C. Krause, L.P. Silva, J.R. Leite, J.A. Melo, M.V. Prates, J.B. Pesquero, E.L. Santos, C.R. Nakaie, C.M. Costa-Neto. and C. Bloch. 2006. Bradykinin-related peptides from Phyllomedusa hypochondrialis. Peptides. 27(9): 2137-2146.

Chi, C.W., S.Z. Wang, L.G. Xu, M.Y. Wang, S.S. Lo. and W.D. Huang. 1985. Structure-function studies on the bradykinin potentiating peptide from Chinese snake venom (Agkistrodon halys Pallas). Peptides. 6(Suppl 3): 339-342.

Chobanian, A.V., C.C. Haudenschild, C. Nickerson. and R. Drago. 1990. Antiatherogenic effect of captopril in the Watanabe heritable hyperlipidemic rabbit. Hypertension (Dallas). 15:327-331.

Conceicao, K., K. Konno, R. Lopes de Melo, M.M. Antoniazzi, C. Jared, J.M. Sciani, I.M. Conceicao, B.C. Prezoto, A.C. Martins de Camargo. and D.C. Pimenta. 2007. Isolation and characterization of a novel bradykinin potentiating peptide (BPP) from the skin secretion of Phyllomedusa hypochondrialis. Peptides. 28: 515-523.

Corwin, E.J. 2009. Patofisiologi. Ed.3th. EGC. Penerbit Buku Kedokteran. Jakarta. Hal.441-520.

Defronzo, R.A., R.E. Ratner, J. Han, D.D. Kim, M.S. Fineman. and A.D. Baron. 2005. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care. 28(5): 1092-1100.

Eng, J., W.A. Kleinman, L. Singh, G. Singh. and J.P. Raufmanll. 1992. Isolation and characterizationo of exendin-4, and exendin-3 analogue, from Heloderma suspecturn venom. J Biol Chem. 267(11): 7402-7406.

Fernandez, J.H., G. Neshich. and A.C.M. Camargo. 2004. Using bradykinin-potentiating peptide structures to develop new antihypertensive drugs. Genet Mol Res. 3 (4): 554-563.

Frykberg, R.G. 1998. Diabetic foot ulcers: current concepts. J Foot Ankle Surg. 37: 440-446.

Frykberg, R.G., D.G. Armstrong, J. Giurini, A. Edwards, M. Kravette. and S. Kravitz. 2000. Diabetic foot disorders: a clinical practice guideline. American College of Foot and Ankle Surgeons. J Foot Ankle Surg. 39(Suppl-5): S1-60.

Frykberg, R.G. 2002. Diabetic foot ulcers: pathogenesis and management. Am Fam Physician. 66(9): 1655-1663.

Ge, Y., D.L. MacDonald, K.J. Holroyd, C. Thornsberry, H. Wexler. and M. Zasloff. 1999a. In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob Agents Chemother. 43(4): 4782-4788.

Ge, Y., D.L. MacDonald, M.M. Henry, H.I. Hait, K.A. Nelson, B.A. Lipsky, M. Zasloff. and K.J. Holroyd. 1999b. In vitro susceptibility to pexiganan of bacteria isolated from infected diabetic foot ulcers. Diagn Microbiol Infect Dis. 35:45–53.

Gedulin, B.R., S.E. Nikoulina, P.A. Smith, G. Gedulin, L.L. Nielsen, A.D. Baron, D.G. Parkes. and A.A. Young. 2005. Exenatide (exendin-4) improves insulin sensitivity and (beta)-cell mass in insulin-resistant obese fa/fa Zucker rats independent of glycemia and body weight. Endocrinology. 146(4): 2069-2076.

Godsel, L.M., J.S. Leon. and D.M. Engman. 2003. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists in experimental myocarditis. Curr Pharm. 9: 723-735.

Ianzera, D., K. Konnoa, R. Marques-Portoa, F.C.V. Portaroa, R. Stöcklinb, A.C.M. de Camargoa. and D.C. Pimentaa. 2004. Identification of five new bradykinin potentiating peptides (BPPs) from Bothrops jararaca crude venom by using electrospray ionization tandem mass spectrometry after a two-step liquid chromatography. Peptides. 25(7): 1085–1092.

Jackson, W.E., D.L. Holmes, S.K. Garg, S. Harris. and H.P. Chase. 1992. Angiotensin-converting enzyme inhibitor therapy and diabetic retinopathy. Ann Opthalmol. 24: 99-103.

Karim, A.K., Z.A. Wasaraka, L.Y. Chrystomo dan E. Indraya-ni. 2012. Peran herpetofauna dalam Bidang Kese-hatan: Peluang dan Tantangan. Jurnal Biologi Papua. 4(1): 37-46.

Kementerian Kesehatan Republik Indonesia. 2012a. Tahun 2030 Prevalensi diabetes melitus di Indonesia mencapai 21,3 Juta Orang. berita/press-release/414-tahun-2030-prevalensi-dia betes-melitus-di-indonesia-mencapai-213-juta-rang.html (diakses tanggal 16 November 2012).

Kementerian Kesehatan Republik Indonesia. 2012b. Masalah hipertensi di Indonesia /index.php/berita/press-release/1909-masalah hiper-tensi-di-indonesia.html (diakses tanggal 16 November 2012).

Lees, K.R., R.J. MacFadyen, J.K. Doig. and J.L. Reid. 1993. Role of angiotensin in the extravascular system. J Human Hypertension. 7 (Suppl 2): S7-12.

Lewis, E.J. 1995. Captopril and diabetic nephropathy. J Am Med Assoc. 273: 1831.

Lipsky, B.A., K.J. Holroyd. and M. Zasloff. 2008. Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: A randomized, controlled, double-blinded, multicenter trial of pexi-ganan cream. Clin Infect Dis. 47: 1537-1545.

Marenah L., P.R. Flatt, D.F. Orr, S. McClean, C. Shaw. and Y.H.A. Abdel-Wahab. 2004a. Skin secretion of the toad Bombina variegata contains multiple insulin-releasing peptides including bombesin and entirely novel insulinotropic structures. Biol. Chem. 385: 315-321.

Marenah, L, P.R. Flatt, D.F. Orr, S. McClean, C. Shaw. and Y.H.A. Abdel-Wahab. 2004b Isolation and characteri-sation of an unexpected class of insulinotropic peptides in the skin of the frog Agalychnis litodryas. Regulatory Peptide. 120: 33–38.

Marenah, L., P..R. Flatt, D.F. Orr, C. Shaw. and Y.H.A. Abdel-Wahab. 2006. Skin secretions of Rana saharica frogs reveal antimicrobial peptides esculentins-1 and -1B and brevinins-1E and -2EC with novel insulin releasing activity. J. Endocrinology. 188: 1–9.

Martin, M.F.R., K.E. Surrall, F. McKenna, J.S. Dixon, H.A. Bird. and V. Wright. 1984. Captopril: a new treatment for rheumatoid arthritis?. Lancet. 8390: 1325-1328.

Mealey, B.L. and G.L. Ocampo. 2007. Diabetes mellitus and eriodontal disease. Periodontology. 44: 127-153.

Nielsen, L.L., A.A. Young. And D.G. Parkes. 2004. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes. Regulatory Peptides. 117(2): 77–88.

Nauck, M.A. and J.J. Meier. 2005. Glucagon-like peptide 1 and its derivatives in the treatment of diabetes. Regulatory Peptides. 128(2): 135-148.

Patlak, M. 2003. From viper’s venom to drugs design: Treating hypertension. FASEB.J. 18: 421-426.

Primarck, B,R., S. Jatna, I. Mochammad. dan K. Padmi. 1998. Biologi konservasi. Yayasan Obor Indonesia. Jakarta.

Reiber, G.E., E.J. Boyko. and D.G. Smith. 1995. Lower extremity foot ulcers and amputations in diabetes. In: National Diabetes Data Group (U.S.). Diabetes in America. 2d ed. Bethesda, Md.: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, NIH publication no. 95-1468.

Riaz, S. 2009. Diabetes mellitus. Sci Res Essay. 4(5): 367-373.

Rioli, V., B.C. Prezoto, K. Konno, R.L. Melo, C.F. Klitzke, E.S. Ferro, M. Ferreira-Lopes, A.C. Camargo. and F.C. Portaro. 2008. A novel bradykinin potentiating peptide isolated from Bothrops jararacussu venom using catally-tically inactive oligopeptidase EP24.15. FEBS J. 275(10): 2442–2454.

Sernia, C. 2001. A critical appraisal of the intrinsic pancreatic angiotensin- generating system. JOP. 2(1): 50–55.

Singh, S. 2011. The Genetic of type 2 diabetes mellitus; Review. J Sci Res. 55: 35-48.

Smith, C.G. and J.R. Vane. 2003. The discovery of captopril. The FASEB J. 17(8): 788-789.

Snehalatha and Ramachnadaran. 2009. Insight into the mechanism of primary prevention of type 2 Diabetes: improvement in insulin sensitivity and beta cell function. “Genetic and epigenetic basis of complex diseases“ Conference in Centre for Cellular and Molecular Biology; December, 2009.

Stumvoll, M., B.J. Goldstein. and T.W. van Haeften. 2005. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 365: 1333-1346.

Triplitt, C. and E. Chiquette. 2006. Exenatide: From The Gila Monster to The Pharmacy. J Am Pharm Assoc. 46(1): 44-52.

Varagic, J. and E.D. Frohlich. 2003. Local cardiac renin-angiotensin system: hypertension and cardiac failure. J Mol Cell Cardiol. 34 (11): 1435-1442.

Weir, M.R. and V.J. Dzau. 2000. The renin-angiotensin-aldosterone system: a specific target for hypertension management. Am J Hypertens. 12 (3): 205S-213S.

WHO. 2005. Clinical guidelines for the management of hypertension/Edited by Oussama M.N. Khatib, Mohamed Sayed El-Guindy. WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland. 97p.

WHO. 2006. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia. WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland. 46p.

Wild, S., G. Roglic, A. Green, R. Sicree. and H. King. 2004. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 27: 1047-1053.

Wysocki, P.J., E.P. Kwiatkowska, U. Kazimierczak, W. Suchorska, D.W. Kowalczyk. and A. Mackiewicz. 2006. Captopril, an angiotensin-converting enzyme inhibitor, promotes growth of immunogenic tumors in mice. Clin Cancer Res. 12: 4095-4102.

Yoon, S.S., V. Burt, T. Louis. and M.D. Carroll. 2012. Hypertension among adults in The United States, 2009-2010. NCHS Data Brief. No. 107. pp: 1-7.

Young, J.B. 1994. Angiotensin-converting enzyme inhibitors in heart failure: new strategies justified by recent clinical trials. Int J Cardiol. 43: 151-163.






Research Articles